home *** CD-ROM | disk | FTP | other *** search
- *
- ************************************************************************
- *
- SUBROUTINE ZSYMM ( SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB,
- $ BETA, C, LDC )
- * .. Scalar Arguments ..
- CHARACTER*1 SIDE, UPLO
- INTEGER M, N, LDA, LDB, LDC
- COMPLEX*16 ALPHA, BETA
- * .. Array Arguments ..
- COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * )
- * ..
- *
- * Purpose
- * =======
- *
- * ZSYMM performs one of the matrix-matrix operations
- *
- * C := alpha*A*B + beta*C,
- *
- * or
- *
- * C := alpha*B*A + beta*C,
- *
- * where alpha and beta are scalars, A is a symmetric matrix and B and
- * C are m by n matrices.
- *
- * Parameters
- * ==========
- *
- * SIDE - CHARACTER*1.
- * On entry, SIDE specifies whether the symmetric matrix A
- * appears on the left or right in the operation as follows:
- *
- * SIDE = 'L' or 'l' C := alpha*A*B + beta*C,
- *
- * SIDE = 'R' or 'r' C := alpha*B*A + beta*C,
- *
- * Unchanged on exit.
- *
- * UPLO - CHARACTER*1.
- * On entry, UPLO specifies whether the upper or lower
- * triangular part of the symmetric matrix A is to be
- * referenced as follows:
- *
- * UPLO = 'U' or 'u' Only the upper triangular part of the
- * symmetric matrix is to be referenced.
- *
- * UPLO = 'L' or 'l' Only the lower triangular part of the
- * symmetric matrix is to be referenced.
- *
- * Unchanged on exit.
- *
- * M - INTEGER.
- * On entry, M specifies the number of rows of the matrix C.
- * M must be at least zero.
- * Unchanged on exit.
- *
- * N - INTEGER.
- * On entry, N specifies the number of columns of the matrix C.
- * N must be at least zero.
- * Unchanged on exit.
- *
- * ALPHA - COMPLEX*16 .
- * On entry, ALPHA specifies the scalar alpha.
- * Unchanged on exit.
- *
- * A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is
- * m when SIDE = 'L' or 'l' and is n otherwise.
- * Before entry with SIDE = 'L' or 'l', the m by m part of
- * the array A must contain the symmetric matrix, such that
- * when UPLO = 'U' or 'u', the leading m by m upper triangular
- * part of the array A must contain the upper triangular part
- * of the symmetric matrix and the strictly lower triangular
- * part of A is not referenced, and when UPLO = 'L' or 'l',
- * the leading m by m lower triangular part of the array A
- * must contain the lower triangular part of the symmetric
- * matrix and the strictly upper triangular part of A is not
- * referenced.
- * Before entry with SIDE = 'R' or 'r', the n by n part of
- * the array A must contain the symmetric matrix, such that
- * when UPLO = 'U' or 'u', the leading n by n upper triangular
- * part of the array A must contain the upper triangular part
- * of the symmetric matrix and the strictly lower triangular
- * part of A is not referenced, and when UPLO = 'L' or 'l',
- * the leading n by n lower triangular part of the array A
- * must contain the lower triangular part of the symmetric
- * matrix and the strictly upper triangular part of A is not
- * referenced.
- * Unchanged on exit.
- *
- * LDA - INTEGER.
- * On entry, LDA specifies the first dimension of A as declared
- * in the calling (sub) program. When SIDE = 'L' or 'l' then
- * LDA must be at least max( 1, m ), otherwise LDA must be at
- * least max( 1, n ).
- * Unchanged on exit.
- *
- * B - COMPLEX*16 array of DIMENSION ( LDB, n ).
- * Before entry, the leading m by n part of the array B must
- * contain the matrix B.
- * Unchanged on exit.
- *
- * LDB - INTEGER.
- * On entry, LDB specifies the first dimension of B as declared
- * in the calling (sub) program. LDB must be at least
- * max( 1, m ).
- * Unchanged on exit.
- *
- * BETA - COMPLEX*16 .
- * On entry, BETA specifies the scalar beta. When BETA is
- * supplied as zero then C need not be set on input.
- * Unchanged on exit.
- *
- * C - COMPLEX*16 array of DIMENSION ( LDC, n ).
- * Before entry, the leading m by n part of the array C must
- * contain the matrix C, except when beta is zero, in which
- * case C need not be set on entry.
- * On exit, the array C is overwritten by the m by n updated
- * matrix.
- *
- * LDC - INTEGER.
- * On entry, LDC specifies the first dimension of C as declared
- * in the calling (sub) program. LDC must be at least
- * max( 1, m ).
- * Unchanged on exit.
- *
- *
- * Level 3 Blas routine.
- *
- * -- Written on 8-February-1989.
- * Jack Dongarra, Argonne National Laboratory.
- * Iain Duff, AERE Harwell.
- * Jeremy Du Croz, Numerical Algorithms Group Ltd.
- * Sven Hammarling, Numerical Algorithms Group Ltd.
- *
- *
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * .. Local Scalars ..
- LOGICAL UPPER
- INTEGER I, INFO, J, K, NROWA
- COMPLEX*16 TEMP1, TEMP2
- * .. Parameters ..
- COMPLEX*16 ONE
- PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
- COMPLEX*16 ZERO
- PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
- * ..
- * .. Executable Statements ..
- *
- * Set NROWA as the number of rows of A.
- *
- IF( LSAME( SIDE, 'L' ) )THEN
- NROWA = M
- ELSE
- NROWA = N
- END IF
- UPPER = LSAME( UPLO, 'U' )
- *
- * Test the input parameters.
- *
- INFO = 0
- IF( ( .NOT.LSAME( SIDE, 'L' ) ).AND.
- $ ( .NOT.LSAME( SIDE, 'R' ) ) )THEN
- INFO = 1
- ELSE IF( ( .NOT.UPPER ).AND.
- $ ( .NOT.LSAME( UPLO, 'L' ) ) )THEN
- INFO = 2
- ELSE IF( M .LT.0 )THEN
- INFO = 3
- ELSE IF( N .LT.0 )THEN
- INFO = 4
- ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
- INFO = 7
- ELSE IF( LDB.LT.MAX( 1, M ) )THEN
- INFO = 9
- ELSE IF( LDC.LT.MAX( 1, M ) )THEN
- INFO = 12
- END IF
- IF( INFO.NE.0 )THEN
- CALL XERBLA( 'ZSYMM ', INFO )
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
- $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
- $ RETURN
- *
- * And when alpha.eq.zero.
- *
- IF( ALPHA.EQ.ZERO )THEN
- IF( BETA.EQ.ZERO )THEN
- DO 20, J = 1, N
- DO 10, I = 1, M
- C( I, J ) = ZERO
- 10 CONTINUE
- 20 CONTINUE
- ELSE
- DO 40, J = 1, N
- DO 30, I = 1, M
- C( I, J ) = BETA*C( I, J )
- 30 CONTINUE
- 40 CONTINUE
- END IF
- RETURN
- END IF
- *
- * Start the operations.
- *
- IF( LSAME( SIDE, 'L' ) )THEN
- *
- * Form C := alpha*A*B + beta*C.
- *
- IF( UPPER )THEN
- DO 70, J = 1, N
- DO 60, I = 1, M
- TEMP1 = ALPHA*B( I, J )
- TEMP2 = ZERO
- DO 50, K = 1, I - 1
- C( K, J ) = C( K, J ) + TEMP1 *A( K, I )
- TEMP2 = TEMP2 + B( K, J )*A( K, I )
- 50 CONTINUE
- IF( BETA.EQ.ZERO )THEN
- C( I, J ) = TEMP1*A( I, I ) + ALPHA*TEMP2
- ELSE
- C( I, J ) = BETA *C( I, J ) +
- $ TEMP1*A( I, I ) + ALPHA*TEMP2
- END IF
- 60 CONTINUE
- 70 CONTINUE
- ELSE
- DO 100, J = 1, N
- DO 90, I = M, 1, -1
- TEMP1 = ALPHA*B( I, J )
- TEMP2 = ZERO
- DO 80, K = I + 1, M
- C( K, J ) = C( K, J ) + TEMP1 *A( K, I )
- TEMP2 = TEMP2 + B( K, J )*A( K, I )
- 80 CONTINUE
- IF( BETA.EQ.ZERO )THEN
- C( I, J ) = TEMP1*A( I, I ) + ALPHA*TEMP2
- ELSE
- C( I, J ) = BETA *C( I, J ) +
- $ TEMP1*A( I, I ) + ALPHA*TEMP2
- END IF
- 90 CONTINUE
- 100 CONTINUE
- END IF
- ELSE
- *
- * Form C := alpha*B*A + beta*C.
- *
- DO 170, J = 1, N
- TEMP1 = ALPHA*A( J, J )
- IF( BETA.EQ.ZERO )THEN
- DO 110, I = 1, M
- C( I, J ) = TEMP1*B( I, J )
- 110 CONTINUE
- ELSE
- DO 120, I = 1, M
- C( I, J ) = BETA*C( I, J ) + TEMP1*B( I, J )
- 120 CONTINUE
- END IF
- DO 140, K = 1, J - 1
- IF( UPPER )THEN
- TEMP1 = ALPHA*A( K, J )
- ELSE
- TEMP1 = ALPHA*A( J, K )
- END IF
- DO 130, I = 1, M
- C( I, J ) = C( I, J ) + TEMP1*B( I, K )
- 130 CONTINUE
- 140 CONTINUE
- DO 160, K = J + 1, N
- IF( UPPER )THEN
- TEMP1 = ALPHA*A( J, K )
- ELSE
- TEMP1 = ALPHA*A( K, J )
- END IF
- DO 150, I = 1, M
- C( I, J ) = C( I, J ) + TEMP1*B( I, K )
- 150 CONTINUE
- 160 CONTINUE
- 170 CONTINUE
- END IF
- *
- RETURN
- *
- * End of ZSYMM .
- *
- END
-